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SUMMARY
_ This report is the first in a series of literature reviews in which ;
3: hygrothermal effects on aerospace composite materials (CM) are examined. !
This first report (Part I) deals primarily with fundamental aspects of the ‘
> diffusion of moisture into, and from, composite materials. The effects of !
’ temperature under both steady state and transient conditions are also !
. examined.

ol
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Subsequent reports in this series will deal with the following

- .

topics:

i d

Part II: Physical Properties

Part III: Mechanical Properties 1

Part IV: Mechanical Properties 2

Part V: Composite Structures and Joints

Part VI: Numerical and Analytical Solutions

Part VII: Summary of Conclusions and Recommendations

A bibliography has also been prepared to serve as a source of fur-
ther information. It will alsc serve as a reference list for the various reports
in this series, and therefore it is included as an appendix.

RESUME

Le présent rapport est le premier d’une série d’études documen-
taires traitant des effets hygrothermiques sur le matériaux composites de
I'industrie aérospatiale. Le premier rapport (Partie I) porte principalement
sur les aspects fondamentaux de la diffusion de ’humidité entrant et sortant
des matériaux composites. Les effets de la température a 1’état stable et
dans des conditions de transition sont également étudiés,

Les rapports subséquents de cette série traiteront des sujets
suivants:

Partie II: Propriétés physiques

Partie III:  Propriétés mécaniques 1

Partie IV:  Propriétés mécaniques 2

Partic V: Structures el juinls composites

Partie VI:  Solutions numériques et analytiques

Partie VII: Résumé des chnclusions et recommandations

Une bibliographie a de plus été préparée pour servir de source
de renseignements supplémentaires. Elle servira également de liste de réfo-
rences pour les différents rapports de cette série, elle a donc ¢été placée en
annexe.

(iii)
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The National Aeronautical Establishment is
pleased to announce the initiation of a new series
of publications, the NAE Aeronautical Notes.
The ‘““Aeronautical Notes’” series has been de-
veloped to complement the existing NAE
Aeronautical Report Series. Althoughk more
limited in scope than the NAE Aeronautical
Reports, the Aeronautical Notes will contain
scientific and technical information pertinent to
both aeronautics and applied aeronautics which
it considered to be a contribution to existing
knowledge and worthy of widespread dissemina-
tion.

I hope that you will find the reports informative
and useful.

Yours faithfully,

=

L’Etablissement aéronautique national (EAN)
est heureux d’annoncer la publication d’une nou-
velle série intitulée “‘Cahiers de 'aéronautique’’.
Ces derniers compléteront les rapports d’aero-
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champ plus restreint que les rapports, les notes
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Dans 1’espoir que vous trouverez les notes inté-
ressantes, je vous prie d’agréer, l’expression de
mes sentiments les meilleurs,

G.M. Lindberg
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HYGROTHERMAL EFFECTS IN CONTINUQUS FIBRE RFINFORCED COMPOSITES

PART I: THERMAL AND MOISTURE DIFFUSION IN COMPOSITE MATERIALS

1.0 INTRODUCT!ON

As metals have seemed to reach their engineering limits in structural applications the aero-
space community, in its search for higher performance, has turned to composite materials (CM). With
rapid maturing of the technology, applications for composite materials have increased to include hoth
secondary to primary structures. Materials of interest in structural applications are continuous fiber
or fabric reinforced resins. Most of the materials used at present have been available for only a short
period of time and new materials are constantly being developed. The aircraft structures designed
curreritly are expected to maintain their integrity for up to 20 years of service under harsh environ-
mental conditions. Appropriate coatings may provide protection against ultra violet radiation and rain
erosion but varying loads, temperatures and absorbed moisture will continue to degrade the material

properties,

Altliough a considerable amount of composite secondary structure has been designed in
Cenada, the inevitable move towirds composite primary structure is being hampered by the lack of
information on the environmental stability of these materials. The testing techniques needed to
develop design allowables are not well established, nor are the methods used for accelerated testing to
demonstrate structural integrity and stability over the design life of the aircraft.

To meet this challenge the Structures and Materials Laboratory cf NAE set out to review
the literature on the subject and assess current state of knewledge in this field. The review should
also indicate areas where move research is still needed.

The author is not aware of any similar review having been prepared in recent years, although
Schutz and Gerhart in 1979 published their “literature research on the mechanical properties’ [109] *
which included so.ne of the papers reviewed here. More recently (1981) Delmonte published his book
on carbon and graphite composites [84]. Both these references contain information on the state of
the art. In this present work, environmental effects have been examined in greater detail and special
emphasis has been placed on the latest publications.

All matrix resins presently used in advanced composite materials absorb moisture directly
from the atmosphere. Since early 1970, significant changes in mechanical properties and dimensional
stability have been observed in compusites and have been correlated with moisture and the thermal
environment. A considerable amount of rescarch has heen directed at understanding the mechanics of
moisture and heat diffusion into composite materials.

Below a fairly detailed review of the problem is presented. The author believes that it is
not possible to conduct environmental testing without a deep knowledge of the underlying processes.
This fact hus somehow been overlooked by some researchers. The aim of environmental testing is to
develop means of predicting the behaviour of composite structures and materials under changing
conditions. Ir laboratory inve: ‘gations, moisture contents can be achieved far exceeding the amounts
which can be expected in actual service. If estimates of degradation are based on these moisture gains,
then overdesign would be unavoidable. However, in order to speed up processes higher humidities and
temperatures are often used, and the researcher has to be aware of the consequences of such proce-
dures. Finally it is not practical to wait 20 years to measure actusl degradation and although such
information is being collected and will be invaluable, degradation has to be estimated from acceler-
ated tests. Again, the design of such tests requires a complete understanding of the underlying physical
and chemical processes.

Numbers in the square brackets refer to the reference number on the list given in the Appendix.
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2.0 ENVIRONMENT ENCOUNTERED BY COMPOSITE MATERIALS

Composite materials technology has advanced so far that it would be difficult to identify all
its numerous applications. In this review aeronautical and space applications were of main concern.

During a subsonic flight mission of an aircraft, temperat..res in the range of - 55°C to 60°C
may be eiicountered. Supersonic flight is more demanding and skin temperatures as high as 150°C
and rates of change of 16°C/min. may be reached due to aerodynamic heating. On reduction of speed,
the outer surface temperatures may drop at a rate up to 500°C/min. [220]. This high temperature
peak is often called a thermal spike [198]), [201], [220], [267], (Fig. 1).

Relative huinidities from a few percent to 100% are expected; additionally exterior surfaces
are exposed to water from precipitation and condensation. Several authors have calculated moisture
contents and profiles in composite material laminates after several years of service [274), [289],
[293], [S19]. It was shown that storage conditions are deterministic to the moisture level attained.
Surface properties of the composite such as absorbance and emissivity have to be known as solar
radiation is an important factor in overall moisture content. These calculations correlate well with
results of long term service experience with composites in commercial aircraft [567], [88]. These
indicate that complete weather data is required in predicting the long term behaviour of composite
materials,

Some composite materials may be applied in cold parts of airplane engines, i.e. compressors-
blades, discs, and nozzle flaps. A temperature range from - 40° to 350°C is typical for these applica-
tions.

Space environment poses yet another challenge to composite materials. The most important
element is high energy radiation [192]. For many applications however, the effect of ultra hard
vacuum resulting in loss of adsorbed and absorbed gases (mainly H, O) and sublimation or evaporation
of the more volatile constituents of matrix materials may be the primary factor [286] . Composite
materials encounter extremes of temperature depending on whether they are in the sun or in the
shade. Drying and temperature changes may cause loss of dimensional stability, particularly important
in applications such as optical instruments and antennas {130] .

Glass/epoxy composites are used for cryogenic service (~4°K), where low thermal con-
ductivity is exploited in conjunction with mechanical strength (thermal isolation structures for space-
craft hardware)[223].

Composite materials are often subjected to fatigue loads and should exhibit impact strength
and shock resistance.

In the foliowing chapters, some results of the investigations aimed at characterizing per-
K formance of composite materials in adverse environments are reviewed.

& 5.0 THE MECHANICS
3.1 Fourier and Fick Models

Moisture absorption can take place by the following mechanisms [2.2}:

1) through the fiber-matrix interface,
2) through cracks and voids in the composite,
3) through the resin.

.:57,;- ,

e

The above is true for inorganic fiber compaosites such as boron, graphite or glass where the fibers do
not seem to absorb moisture. However, for Keviar CM it was found [9] that the fibres absorb moisture
and reach equilibrium moisture contents of the same order as typical epoxy resins (5208 Narmco in
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this case). In-plane diffusion in Kevlar 49 fabric/epoxy laminate was measured to be two orders of
magnitude (6.1 X 10-8cm2 /s vs 1.7 X 10°10cm2 /s) faster than through the thickness. Diffusivity in
Narmco 5208 resin was 6.5 X 10°19cm? /s. Therefore for organic: fiber composites, diffusion in the
filament may be considered as the fourth mechanism of moisture absorption.

Several authors have applied Fourier theory of heat transfer to composite materials. :
Fourier’s equation of heat transfer in tensor notation presented below was taken from [45]. i

oT 9 aT
ot Bxi i axj

pec — = — —] = (Klj T\j).i (1&)

where p -— is material density
¢ — is specific heat
T — is temperature
t —istime
x; — are material co-ordinates (i = 1,2,3)
K;; — is thermal conductivity tensor

If K;; is not a function of temperature and position, (1a) simplifies to:

32
pc %;I—‘ = K 5;% (1b)
The rate of heat transfer per unit area per unit time is the heat flux vector:
aT
-q; = K; '5; (2)
Equations (1) and {2) above are called sccond and first Fourier laws.
For most general material forms (triclinic) the conductivity tensor has the form:
K Kp Ky3)
Ky Kun Ky (3a)
| Ka Ky Ky
However, materials of interest to this study are orthotropic, w-i‘th conductivity tensor:
FK, 1 0 0 l
0 K,, 0 (3b)
LO 0 K 33 |

where K, , K;;, K33 are conductivities in three perpendicular directions.

For unidirectional laminate having transversly isotropic properties (square or hexagonal
fiber packing) and x, parallel to fiber direction:

K2 = Kj;3
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and
rK“ 0 0
0 K,, 0 (3c)
0 0 K,
conductivity of a laminae with arbitrary fiber orientation (Fig. 2) can be calculated from Equation (4) ‘
(tensor notation) |
, Kag = 8ra 2, Kj, 4)
E_‘. where

8,,,8,5 — aredirection cosines
K,s — conductivities according to specimen geometry
Ki,' — conductivities in principal material co-ordinates, x; parallel to fiber axis.

usually

vy = 90° (8 = 90° - a)

and

' 2 ! 5 sin2
Kj1 = Ky cosla + Ky, sin2a |

Klz = (Kf‘z - K'u%.‘OSQSinQ

' (5) 4
K22 = Kil sinzﬁ‘ + K22 C‘)Sza ;
Ki3 = Kj; = Ky
K}, — conductivity in CM along the fiber
K3, — conductivity in CM transverse to the fiber
Springer and Tsai (272] approximated K;, aud K;, by following equations:
Kiy = (1- VoK, + VK¢ (6)
Ve
1- 2 .
P Ky = |1 "y/vf K, + o :  tan? \/- e (7
- 24)—- - - -
: 22 x T By J ) Vf . Vi J
re® - —— +4 _—
3 b~ AN
u
.:: Vi —  volume fraction of fiber
. K, — thermal conductivity — resin
N K; — thermal conductivity — fiber

s K,
I = 2 —— - 1
B} b K;

..................................
.......
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T:-ansfer of heat by condu: :ion is due to randoem molecular motion while diffusion is a
vrocess by which matter is transferred as a result of random molecular motion. This analogy was
recognized by Fick who adopt.»d the mathematical formulae of Fourier to diffusion. Fick’s diffusion
model has been applied frequently to CM, [22], [262], [272], [312], [313].

Fick’s second law in tensor notation:

a_c=a_D_a_c_=DC) (8a)
ot axi ¥ ax_‘ ( Ul

¢ — concentration of moisture
D;; — diffusivity tensor

It has been observed (i.e. [22] ) that diffusivity varies little with moisture content (hence x;) for CM,
therefore:

oc 92¢

— = D\, —— (8b)
ot Y oox; ox;

Fick’s first law states that F, the rate of transfer (flux) of matter, by diffusion through a
unit area of a section is propc<tional to the concentration gradient normal to the section:

ac
-Fi = DU _a';" (9)
)

All arguments developed for the conductivity tensor apply to the diffusivity tensor so for laminae
with fibers at an angle to the sample co-ordinates (Fig. 2)

RS
[

= Dj; cos’a + Dj, sinla

Ay
[

$ = (D}, - D}, ) cosa sina
i (10)
% D;; = Dji, sin?a + D3, cos2a

i D33 = Dj; = Di3

; This analogy between heat transfer and diffusion was carried further by Springer and Tsai [272] who

[ used Equations (6) and (7) or calculating D}, and D;, from diffusivities of fiber and resin (D; and
| D,) since for most fibers Dy << D,.

Dj, = (1-V{)D, (11)

Dy, = (1- 2 YV ), (12)

(D3, for tetragonal packing)

Augl and Berger [22] calculated effective diffusion coefficients in the transverse direction
(D3, ) by solving the Poisson equation for hexagonal and tetragonal packing using finite difference
methods with appropriate boundary conditions, They compared their results with Springer and Tsai’s
heat transfer analogy and R .yleigh’s electricity conduction analogy (Fig. 3). The thermal analogy
underestimates the diffusion coefficient because it does not account for flow around fibers. The
analugy of conduction of electricity gives excellent result up to V; = C.7.
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, 2 Vy
Dy = {1 - D, (13)
1+Ve- 03058 Vi . ...

For laminated plates Whitney [313] showed that effective diffusivity through the thickness is

N
D= El i (14) i
D33 f
where N = number of laminae ',
h = thickness
i = superscript denotingi — the layer
while in-plane effective diffusivities are
D.. D. D 1 X i i i i
(Dy1,Dy2,D52) =+~ Z (D}, Dy, D3;,)h (15)

3.2 Solving Heat and Moisture Transport Equations

From Equations (1) and (8) it can be seen that Kjj/pc and D;; are measures of the “speed”
by which temperature and moisture concentration change in a material. Since [K;j/pc] /D;; is of the
order Sf 106, most authors solve Equations (1) and (8) separately, ([272] , [22], [38], [509] , [812],
[313]). '

For most diffusion problems temperature is assumed to be equal to ambient and uniform
inside CM and solutions to Fick’s Equation (8) given by Jost and Cranck are used. For one-dimensional
probiem, infinite plate of thickness L, with constant boundary conditions such that [38]:

c=¢, at t =0 and all x

c=c,at x=0 and x =L at t > 0

G
)

"
<
t.

- ]
e .'1
:

="
avk
X .-
A
AL

e c=c_ at t=oco and ail x
..-‘ then

T - == - 242

R €t~ Co 4 " O l(@n+1)nx D(2n + 1)2n2t

s =1-— % (2n+1)lsin|—— |exp (16)
' :'_3 c.- ¢, T n=0 L L?

2% n — integer

""_ the total amount of penetrant (water) is

e .

, m= [ e¢(x,t)dx a7

0

on substituiion

T e 1o 2Y (an+ 1y2exp| RERI LM (18)
— =1- n +1)2ex
m_- m, LT P L2
e S T L T T P E TUE TSP PPN, |




x4 A

vy

T T e

O e T BTN o T e A

. -— PR S T R Y T T T ol 2t v gl Gl A iadh Shtaic Mhalr B ol 4
WY J(z@w"‘ TS TR T L AL i '_"": Ml T T T TR 'i" ,‘. AR A e 4 T e T ﬁ
LA LZS DY 1 D P T e S e ~ T WU . A - B . .

However for solutions where t is shore (10°-106 sec) Equation (16) converges very slowly and several
hundred terms may be required. In suckh cases, a Laplace transformation solution is more suitable:

€~ C z -1- 2n-1+x/L
. T 1" efc 2n-1 —)ili- + erfc Zn-1+x/L (19)
Ca”C 0=l 2 t* 24/t*

where

for t* < 10-2 only the first term needs to be considered [309]

c - ¢ 1-x/L
R k. (20) |
™% 2yt* 1

Shen and Springer used a correction factor to account for edge effects when applying 1-D solution to
problems with finite laminated plates [272].

Whitney [312] [313] presented 3-D solutions to Fick’s Equation (8). His trigoniometric
and Laplace solutions are both prcducts of 1.D solutions. He also compared these solutions with
experimental data and concluded that for thin laminates a one-dimensional solution can be used, while
for moderately thick laminates, a one<iimensional approximation (with edge factor correction) gives
good results (Figs. 4, 5, 6).

3.3 Moisture Content of CM under Transient Conditions

In [262], [311], [111], it has been found that in the case cf moisture-absorption, the
diffusion coefficient is sensitive to temperature and follows the relation of the activated transition
state theory of diffusion:

D = D, exp[-E4/RT) (21)

D, — permeability index [m2 /5]

Ey — energy of activation for diffusion [J/mol]
R — universal gas constant

T — temperature [°K)

Weitsman [309] has suggested a solution to Fick's second equation for the case when
tempersture changes with timne. For such cases, the diffusion coefficient D becomes time varying (21).
Weitsman used simple transformation and reduced the problem to the familiar case of time-
independent solution.

In the same paper, he demonstrated that the decoupling of diffusion and heat transfer
equations does not produce significant errors in absorption-desorption analysis as compared to
coupled solutions. However, Sih and Shih in [268] [270] solved coupled equations for large gradients
of moisture and temperature using finite difference methods. They found that for cases when transient
stresses are of interest, coupled diffusion theory for an infinite plate gives stresses 20-80% higher as
compared to the uncoupled theory.

Springer [274] [272] investigated diffusion of moisture into uncoated and coated plates
made of fiber reinforced plastic. The plates were exposed on both sides to temperature and humidity
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variations in a cyclic manner. A computer program “W8GAIN"’ (for listing see {272] ) was developed
and used to determine moisture content (per cent weight gain) and distribution inside the material
as & function of time. “W8GAIN"’ solves Fick’s second 1-D Equation (8) uncoupled with the second
Fourier Equation (1) for concentration independent diffusion. From the results Springer concluded
that:

1) For Transient Ambient Conditions:

a) After 10 years of exposure moisture content nearly reaches steady state. After that
there are only slight fluctuations around this value,

b) Moisture distribution never attains a steady state. It changes continuously and after
about 6 years most changes are taking place in a narrow (0.05 mm) “boundary layer”
near exposed surfaces,

2) Constant Ambient Conditions

(P
420

a) The actual variation of the moisture content and distribution with time cannot be
duplicated in accelerated tests by simply replacing transient ambient ccaditions by
constant conditions of temperature and humidity.

e

YT1 P

%

b) The “steady state’ moisture distribution inside the material (but outside the boundary
layer) and “steady state’ moisture content can be approximated by constant ambient
conditions. However, the appropriate constant relative humidity to be used in the
simulation cannot be guessed a priori, but must be determined by solving the entire
transient problem.

3) Coated Composites

",

K All of the above conclusions are valid for coated composites. However, permeable coatings
- may reduce the amount of moisture absorbed (Figs. 6, 7, 8, 9).
\-" Bohlmann and Derby [38] compared infinite trigonometric series solution, ‘“Multicomp”’

(finite difference numerical method), and an empirical hyperbolic tangent solution with test data, for
moisture predictions when ambient conditions changed. They concluded that when moisture predic-
tions for transient conditions, with different relative humidities on each surface are necessary, a
numerical method such as “Multicomp’ must be used to account for the actual moisture profile.
However, if only a quick estimate of moisture content is desired (15% accuracy) for equal relative
humidity on both surfaces or for one insulated surface, both the series solution and hyperbolic
tangent solution method can be used.
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Augl and Berger [24] also studied long-term exposure to transient ambient conditions. They
postulated that some kinetic average temperature (T,,, ) and humidity (RH,,, ) conditions exist that
would give the same moisture profile and content as the actual varying environment. A rationale for
calculating T,,, and RH,,, was given. Results are compared for trigonometric series solution using
T,vx and RH,,; with finite difference method for actual weather data in 3 hourly steps and monthly
steps where T,,, and RH,,, were calculated for any given month. If moisture content is to be deter-
mined, then kinetic averages give good results for thick (24-ply T300/5208) laminates. For initial
moisture uptake using monthly averages in conjunction with finite difference method, the starting
month maybe important, Moisture profiles calculated from monthly averages are accurate if the
boundary layer is net considered. However, 3-year kinetic averages with trigonometric series solution
for thin (6-ply) laminates cannot be used. This method gives satisfactory results for laminates of
36 plies.
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In the same work, the influence of the sunr’s radiation on diffusion was studied and it was
found that the surface of the CM could be 22°C - 28°C warmer than the surrounding air, thus
increasing the diffusion coefficient.
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Very detailed parametric analytical studies of the influence of surface and environmental
thermal properties on the moisture absorption in fiber-reinforced CM, subjected to convection and
solar radiation have been reported by Tompkins, Tenney and Unnam [290], [289], [293]. They
have also included in their analysis variations in diffusion coefficient due to cyclic wetting and drying
and calculated moisture content and profiles for weather data from different bases and for different
flight scenarios. The mcst significant finding was that a composite panel exposed to the sun (12-ply
T300/65208) will pick up approximately 30% less moisture than a panel exposed in the shade. The
average moisture content of CM panels is relatively insensitive to geographical location, but the large
cyclic seasonul variations occurring in desert areas may be more detrimental to CM than the high
moisture content aszuciated with h:imid areas.

The results for commercial aircraft service scenarios indicate that equilibrium moisture
content depends primarily on the ground relative humidity during non-flight hours, (Figs. 10, 11,
12,13, 14},

NASA has sponsored a long-term project on Environmental Effects on CM, during which
moisture pickup was registered world wide in samples exposed on the ground and in real in-flight

service environment in commercial aircraft. The results agree very well with these obtained by
Tompkins et al, [567], [88], [237].

Recently Weitsmann [307] has suggested an alternative numerical method of computing
moisture distribution under time varying ambient relative humidities and temperatures. Moisture
ditfusion was assumed to follow Fick’s laws. It was shown that by switching among various forms
of analytic solutions, all involving infinite series, it is possible to attain extremely high accuracy by
means of a small number of terms,

Bergman and Nitsch [34] have discussed factors affecting the accuracy of analytical
estimates. These were:

1) The applicability of the classical theory of diffusion to fibrous composites.
2) The adequacy of mathematical models and their computational aspects.
3) The realistic definition of the environmental conditions.

4) The reliable determination of materia} properties affecting diffusion.

4.0 METHODS OF EXPERIMENTAL IDENTIFICATION OF DIFFUSION PARAMETERS
4.1 Methods for Determining Diffusion Coefficients in Polymers ([9], [22), [262], [272])

Before Fick’s equation can be solved the diffusion coefficient D and moisture equilibrium
content or saturation level m_ have to be established experimentally. m_ is usually found by moni-
toring weight pickup during exposure to constant humidity and temperature of initially dry samples.
Often very small (thin) samples are used since rates of diffusion at room temperature are slow.

Diffusion coefficients are usually measured by two widely applicable methods. The first
is based on steady state flow rate determinations through a membrane.
From (9)

F = - D(c, x) gﬁ (22)
dx
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For steady state flow rate
1 Co
F == [ °D(c)Mc (23)
L ¢,

The second method is based on absorption or desorption measurements of diffusant, mostly in plates.
m

The ratio, - is plotted vs \/ t for initially dry plates held at constant temperature and humidity.
m-

For concentration independent diffusion, solutions to Equation (8) are used ({9], [22], [272],[311],

and others) for determining 3-D diffusion coefficients, method from Reference [190] can be used.

m,

The initial slope of the plot of — vs V t is measured, and provided that the diffusion is
m

Fickian, D can be calculated. Shen and Springer [272] have improved this method by introducing a
correction to account for edge effects. Carter and Kibler [50] have used an “incremental grinding
method,”’ for rapid measurement of m_ and D, which is based on the solution of Fick’s equation. The
method depends on the fact that, whereas the initial rate of moisture uptake depends only on the

product m_ﬁ, the distribution of moisture near the surface depends on m_ and D separately.
When slices of a few thousands of an inch are ground from one or both sides of a specimen exposed
for short times (few days usually) to moisture, the remaining moisture content together with the
initial weight gain, provide reasonable estimates of both parameters.

For concentration dependent diffusion coefficient method described by Tajima [282] can be used.

4.2 Determination of Meisture Distributions

g
. CJJ{.L 84

Leung, Kaelble and Dynes have presented in a series of papers [190], [191], [152] a
method of calculation of moisture profiles based on measurements of effusion rates, and on previously
established diffusion coefficients. This method is effective even if non-Fickian diffusion is evidenced
by bulk water penetration into open microcracks. For such cases, rates of desorption seem to be
constant for subsequent absorption-desorption cycles. These constant rates are used in the Inverse
Diffusion Model, together with measured rates of effusion as a function of time after the specimen was
heated to a desired temperature. Statistical estimation theory is applied to obtain initial moisture
profile from experimental data.

g o4/
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Delasi and Schulte [82] devised experimental methods for the evaluation of localized
moisture content. It involves conditioning of the specimen in D, O, followed by measurement of the
localized deuterium roncentration by means of a nuclear reaction. Both equilibrium moisture levels
and profiles can be obtained in this way.

. 1%
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Sandorff and Tajima [262] developed a simple and inexpensive method which involves
splitting a small specimen of the laminate into thin slabs and drying them to determine their moisture
content.

Singh, Holt and Mock [271] suggested that moisture profiles could be determined through
the measurement of positron lifetime. They showed that this lifetime is a linearly decreasing function
of the moisture content. If magnetically analyzed, positron beams should provide a map of the
moisture depth distribution. This would be the first quick and non-destructive method of moisture
profiling.

Before some of the results obtained in CM are presented, a paper by Edge [98] should be
mentioned. He has pointed out the importance of drying specimens completely prior to exposure,
gince failure to do so may lead to serious errors when conducting moisture absorption experiments.
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5.0 EXPERIMENTAL RESULTS
5.1 Moisture Absorption in CM

Several authors have monitored moisture absorption and desorption in CM and in non-
reinforced resins. Shirrel and Halpin in their review [262] have presented the most typical results
obtained, (Figs. 15, 16,17, 18,19).

These results were for panels exposed to constant temperature and humidity conditions.
More recently similar results were obtained by Loos and Springer 1196] and Long [195].

Moisture equilibrium depends on relative humidity but is usually independent of temper-
ature (Fig. 17). The following empirical relation is appropriate.

m_ = a(RH)® (24)
where a and b are material constants (this is known as Henry’s Law).

Eckstein [96] studied moisture absorption by epoxy resins of different composition used in laminates.
Kourtides [178] published weight gains of epoxy and bismaleimides A and B and their composites
immersed in water. Bismaleimides absorb less water. Crossman et al., [70], [69] measured equilibrium
moisture contents in laminates of HMF 330C/934, T300/5209 and GY70/339 as function of temper-
ature and humidity. From Figure 20 it can be seen that for 95% RH there is a marked dependence

of m_ on temperature.

The temperature dependence of diffusion coefficient seems to closely follow Equation (21).
Loos and Springer [196] concluded that transverse diffusivity of a composite can be estimated from
diffusivity of the resin, provided that the resin and the composite were cured in the same manner
(they used the Springer-Tsai thermal analogue). However Augl and Berger [22] measured diffusivities
of neat resins and their composites using two types of fibers (HMS and T300). Results showed
between 20% to 60% higher diffusivities for composites (same matrix and V; difference less than
4%) with HMS fibers than with T300. This was because T300 was sized with epoxy for handleability,
and the result points to the importance of interface on diffusion. Measured diffusion coefficients
were 30% lower than those calculated by the finite difference method from neat resin diffusivities.

Because of the highly sensitive nature of diffusion parameters to resin composition, cure
quality, void content and interface, Carter and Kibler [50] suggested that diffusion of moisture could
be used as a screening test for consistency of mechanical properties.

Menges and Gitschner [216] introduced the “‘interface factor” for calculating equilibrium
water absorption in laminates, from equilibrium for neat resin and fiber volume fractions. The inter-
face factor is essentially a measure of the quality of a composite. As can be seen from Figure 21, for
glass composites for higher interface factors, composite may absorb more moisture than the equilib-
rium for neat resin.

Hertz [130] observed weight gain of pseudo-isotropic GY-70/X-3 (graphite/epoxy) exposed
first to room temperature/humidity and then to room temperature vacuum (106 torr). Results
indicate that desorption is generally slower than absorption and highly dependent on the moisture
distribution.

Published results on absorption experiments with organic fiber composites are few. Augl,
[25) studied moisture absorption and diffusion in Kevlar 49. Moisture absorption equilibrium con-
centration as function of relative humidity and diffusion coefficient as function of concentration at
28°C and 50°C have been measured. This diffusion coefficient was considerably lower than for most
other polymers. Thus, Augl concluded, in composites the effective diffusion coefficient is governed by
the resin diffusion coefficient and therefore the fibers behave as if they do not contribute to moisture
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transport, althougn the total moisture upiee has to be taken into account. No significant differerce
in the absorption behaviour of y~ms with and without sizing was observed. Allred and Lindrose [9]
detarn .ved roisture diffusion coefficients for quaci -isotropic Kevlar 49 181 -style fabric reinforced
Narmco 5208 epoxy. Results were 6.1 X 10-® cm?2/s in e leiningle plane, 1.7 X 10°19 em2/s for the
through the thickness diffusion and 6.5 X 10-10 cm2 /s for pure resin. This would indicate that the
rapid in-plane diffusion is due to the preferential diffusion of moisture in the filament along its length,
while Augl’s conclusion would still be true for through the thickness diffusion.

Recently, jute fibers have been used in composites and some results on their diffusion
properties will be found in [239].

Bohlmann and Derby, [38] found that surface finish has no effect on diffusion of moisture.

5.2 Effect of Thermal Spiking

McKague et al. [213] have found that exposing CM to therm al spiking, similar to that en-
countered during supersonic flight, caused permanent changes in the suhsequent moisture diffusion
behaviour of graphite/epoxy. Both the amount and rate of moisture absorption increased consider-
ably. They have also found that exposure to sub-zero temperature did not cause changes in diffusion
behaviour,

Bohlmann and Derby [33] studied the effect of the thermal spike encountered by the
Shuttle OrLiter Aft Propulsion Subsystem which is characterized by much slower heating and cooling
rates than the ones encountered during supersonic flight missions. This may explain why Bohlmann
and Derby did not record any effect of thermal spiking on diffusion of moisture.

Browning [42], [44] reported that increased diffusion rates and higher absorptivity result
from microcracks which are formed due to stresses caused by moisture and temperature gradients
(during the thermal spike). These microcracks provide additional surface area for absorption/
desorption processes. Due to the lowering of glass transition temperature (Tg), with higher moisture
content, composite materials can more easily undergo viscous flow to accommodate the water.

McKague {211], [214] also gives evidence for microcracks being responsible for additional
moisture absorption. He suggests that the relationship between moisture content and Tg forms a
service envelope for CM.

Similar results were reported in [81], [128].

Lcos and Springer [198] studied the relationship between material behaviour and the
thermal spike variables: max. and min. temperature during the spike, vates of increase and decrease
of temperature, duration of the spike and number of spikes. For the material chosen (T300/1034)
thermal spiking seemed to have no effect on equilibrium moisture content and transverse diffusivity.
This led the authors to conclude that the effect of thermal spiking depends on the composition of
the material.

Recently Shyprykevich and Wolter [{267) proposed a semi-empirical transport model based
on Fickian diffusion to describe the changes in absorption characteristic as a function of Tg ex-
ceedences.

Morgan et al. [220], [221] have presented results cn the effects of thermal environment
and absorbed moisture on cured amine epoxies. The moisture induced swelling stresses together with
the enhanced mobility of the water molecules within the epoxy-moisture system during thermal
spiking produce free-volume increases that involve rotational-isometric configurational changes within
the epoxy network. Such changes are fixed in the epoxy during the rapid cooling after the thermal
spike. This additional free-volume allows water molecules access to previously inaccessible sites within
the epoxy. Morgan et al. see this as a primary mechanism responsible for increased moisture absorp-
tion, while rupture of cross-links, crazing and/or cracking, and loss of unreacted material should be
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regarded as important factors. From Figure 22 it can be seen that constant tensile stresses over 38 MPa
applied for one hour on initially dry epoxies enhanced moisture absorption by 0.5 wt%. Those studies
indicate that the initial stages of failure, that involve dilatational craze propagation as weil as sub-
sequent crack propagation, enhance accessibility of moisture to absorption sites to a greater extent
than in the later stages of failure which involve crack propagation alone.

5.3 Effect of Cycling Environments and Pretreatment

Several investigators have cycled either temperature or humidity (or both) during absorption
experiments.

Sometimes cycling was due to the fact that while samples were exposed at higher tempers-
tures they had to be brought to room temperature for weighing. Kaelble and Dynes [155] did not
observe any changes in the diffusion kinetics for graphite/epoxy composites in this case.

Blaga [37] measured moisture absorption and desorption kinetics of weathered glass
reinforced polyesterstyrene (cross-linked). After three years, weathered samples absorbed more
moisture, 20-26% for exposure from 30 to 80% RH and 13 to 156% more for higher RH exposure.
All absozption-desorption was carried at a temperature of 23°C. The diffusion coefficients for ab-
sorption and desorption for weathered sheets were 47% and 30% higher respectively than in control
sheets (at 80% RH) with an even greater difference for higher RH. A possible explanation for these
changes was the UV-induced photo-oxidative degradation observed on the surface of weathered
sheets.

Halloff [121]) studied the effect of heat treatment, before exposure to humid conditions
on graphite/epoxies (T300/5208, HT-S/3501 and Fibredux 914C). Two laminates of T300/5208
[(£45),/45]s,( and [(0/£45/90), ] 5,6 With void contents of <0.1 and 0.9 respectively were tested.
However, from the data presented, it seems that absorbed moisture weight gains for thinner laminates
were inadvertently interchanged with weight geins for thicker laminates, (Figs. 23 and 24). Much
higher absorption rates correspond to thinner laminates. The fact that equilibriuin was not reached
after 125 days of exposure also indicate a characteristic of thicker laminates with higher void contents
(non-Fickian diffusion could be expected). However it can be seen that heat treatment prior to
humidity exposure had a different effect depen<ing on both the thickness of composite and the void
content (a difference up to 50% in equilibrium woisture content). Fibredux 914C did not show any
different effects after various heat treatments, and it can be concluded that heat treatment effects
only some materials.

Shirrell [263] studied diffusion of water into T300/5208 laminates. He observed that
apparent values of equilibrium solubility of moisture in laminates are affected by the degree of cure.
Laminates subjected to postcure treatment absorbed more water, with a trend towards lower equilib-
rium moisture content with increasing temperature. Non-postcured specimens exhibited constant
equilibrium moisture in relation to temperature.

Crossman 2t al. [69] subjected T300/5208 and T300/5209 laminates to 100 hygrothermal
cycles between temperatures - 54°C and 70° or 93°C. Specimens were held for 15 minutes at each
temperature and switched between two chambers maintained at the two temperature extremes. After
five cycles, specimens were held at constant humidity and temperature for two hours, then after
every 15 cycles, specimens were held in constant humidity /temperature overnight. No significant
changes in moisture content was found and neither surface or edge cracks, fiber matrix debonding
nor trangverse microcracks were detected.

Apicella and Nicolais [16] recently reported absorption data for neat epoxy resin
(Epikote 828 cured with TETA curing agent) which showad a dependence on tempereture and
humidity histories. Samples exposed at 60°C and higher temperatures and higher RH, absorbed
more moisture and displayed lower diffusion coefficients when dried and exposed for a second time.
No significant change in either value was observed for ad.!itional drying and wetting cycles. This
change was explained in terms of hypothesized induced “vicrocavities that can be formed by solvent
crazing in the plasticized system.
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6.0 THEORIES ACCOUNTING FOR DEPARTURES FROM FICK'S MODEL

6.1 Non-Fickian and Concentration Dependent Liffusion

Numerous investigators have claimed that moisture absorption in graphite/epoxies is a
concentration-independent Fickian diffusion process. Some of their results were presented in previous
sections, No attempt was made at explaining observed effects using other than simp!e Fickian diffu-
sica. However, Shirrell | s63] ncinted out that below the glass transition temperature, both filled
and neat epoxy resins can also exhibit either:

1) concentration dependent diffusion
2) time-dependent diffusion anomalies
3) Casell — transport*

4) solvent crazing/stress cracking.

This author observed non-Fickian absorption anomalies in T300,5208 laminates (postcured and
non-postcured) at higher temperature (82°C) and moisture levels ubave 34% RH. Non-Fickian
diffusion anomaiies were observed at both high and low moisture concentrations and concentration

dependent diffusion could not be excluded. In [265] Shirrell presented similar results for AS/3501-5
and Boron/6506 laminates.

In [284] Shirr:ll et al. described a microscopic examination of T300/5208 laminates.
Microcracks were observed after exposures to 82°C and different RH, while for lower temperatures
at similar humidities niiccocracks were not found. At 82°C, the severity and frequency of cracks
increased with hunidity. Postcured specimens formed more severe microcracks than non-postcured.
It is not clear whether cracks were formed due to hydrothermal expos:ire or due to the fact that
considerable temperature cycling was introduced for weighing samples during moisture gain moni-
toring. Kaelble, Dynes and Leung [191], [152] have suggested using moisture diffusion analysis
(MDA) to scan the area or length of a composite panel to locate regions of micro-structural degrada-
tion. In such regions non-Fickian diffusion is evidenced by bulk water penetraticn into open micro-
cracks followed by a« celerated mnolecular diffusion in the regions between cracks.

Whiiniey and Browning [311] presented moisture aiffusion data on 3501-5 neat resin
and AS/3501-5 graphite/epoxy composites which indicate a depu.ture from classical Fickian diffusion

Dt
hehavicurs. If moisiure percent weight gains are plutted against \It_*‘ (t' = T see E7.(17)] then

one mastei curve can be plotted for d.{ferent RH and temperatures. Tnis plot can then be checked for
compliance with Fickisn diffui ‘on Equation (16) or (17). At higher RH and temperat.res neat resins
and their comnosites exhibit two-stage diffusion. An initial equiiibrium is reached and remsins
constant for some time. Lotor, additional amounts of water are absorbed. At this stage, cracks can
usually be found in the matrix. Whitney and Browning observed the largest departure in bidirectional
laminates. The through-the-thickness diffusion coefficient was considerably higher than that for
unidirecticnal composites but when a time decreasing diffusion coefficient was used, improved
correlation with theory was achieved. This decrease in diffusion is coincident with decrease of
tensile tranaverse stresses (significant for bidirectional iaminates).

Hahn and Kim [118] noted that for subsequent immersion in water at 82°C and desorption
ir. vacuum of AS/3501-5 (graphite/epoxy), initial absorption in virgin specimens seems to produce
microcracks. The residual-swelling stresses appeared to be responsible for absorption being initially
slower than desorption, because the boundary layer is in compression during nbsorption whereas it
is in tension during desorption.

. A case where a sharp boundary, advancing with constant velocity, separates the inner glossy state from outet solvent swollen,
rubbery shell [6].
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Gillat and Broutman [111] and Kim and Broutman [170] studied the effect of external
stresses on moisture diifusion. Graphite/epoxy (SP-313) specimens were loaded in tension and then
immersed in water at 25°, 40° and 60°C. Even at 0.25 of the ultimate tensile stress (UJTS), when no
cracks could be detected in the composite, the diffusion coefficient was 2bout 80-90% higher than the
unloaded case, and equilibrium moisture incregsed slightly. More significant changes were observed for
loads exceeding 0.45 UTS. However, for temperatures not exceeding 60°C Fickian diffusion gave good
correlation with experiments, if the diffusion coefficient for siressed material was used.

- S A5, s
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Marom and Broutman {207] found that the rate of water uptake by unidirectional glass
and graphite reinforced epoxy composites was an increasing function of the loading angle with
respect to the fibre direction. This suggests some dependence on the increese of the matrix volume,
which is influenced by the local strain and the material Poisson ratio.

AAMAS "L W .. . T T

Apicella and Nicolais [ 18] observed synergistic effects of absorbed moisture, temperature
and applied stress. Two samples were immersed in water at 40°C, one of them under uniaxial tension,
(7% of yielding stresses), and the other stress free. After drying and subsequent soaking with both
samples unloaded, the previously loaded specimen gained 16% more moisture in the equilibrium
condition. These authors support the thecry which explains this absorption behaviour in terms of
crazing. It is a process of plastic deformation in the tensile stress direction without lateral contruction
involving significant cavitation and localized fibrillation. Stress field is induced by mechanical load,
temperature or swelling due to absorption. A craszing criterion (after Sternstein and Ongchin [275] )
can be used to determine whether the type of stress field induced increased the crazing tendency.

An interesting observation was made by Apicella and Nicolais [16] and by Adamson [4],
(Fig. 25). Specimens, both neat resins and their composites, were exposed to moisture at 75°C. After
the equilibrium or near equiiibrium moisture content had been achieved, the temperature was dropped
while humidity was kept at the same level. The samples absorbed additional moisture and a 15%
higher equilibrium was reached. Apicella and Nicolais explain this effect in terms of additional
moisture trapped in the formed voids. Adamson called this effect the reversed thermal effect, and
explained it in terms of free volume theory, which accounts for the fact that the network structure
of cross-linked epoxy resins is not homogeneous. Rather, it is a mixture of highly cross.linked
micmgel particles (micelles) embedded in a less highly cruss-linked matrix (i.e. two phase network).
Adamson simultaneously monitored both weight gain and swelling. In Figure 26 the rate of swelling
is divided irito three regions. First to Region I, in which resin swelling is far less than the volume of
the water absorbed. This region includes absorption into free volume and the bonding of some water
molecules (causing swelling). The rate of absorption is rapid in this region. In Region I, swelling is
equal to the volume of absorbed water, an indication that all free volume is occupied and water can
be absorbed at the rate at which it is bounded 1.0 the resin. Finally in Region III, swelling is again less
than the volume of water absorbed which is attributed to the free volume in the micelles being
occupied. As free volume increases with decreasing temperature, more water can be absorbed into the
resin. The most significant difference between the two given explanations for the “reversed thermal
effect” is the fact that defects are not necessary in Adamson’s model, i.e. the process is reversible.
However, both models see resins as multiphase mediums, in which case Fick’s model cannot adequate-
ly describe diffusion.

The reported “reverse thermal effect’’ questiona the validity of most diffusion experiments.
The majority of investigators, while monitoring the weight gains of their samples exposed in higher
temperatures, cooled them prior to weighing at room temperature while simultaneously maintaining
constant humidity. Thus higher moisture contents could have been reached than should be expected
for given exposure temperature, To avoid this error, specimens should be weighted at the same
temperature as was used during exposure,

Tajima and Wanamaker [283] studied absorption properties of T300/5209 laminates and
5209 neat resins. The desorption rate was greater than the rate of absorption and some moisture was
retained irreversibly (samples were dried in air). For both absorption and desorption diffusion was
concentration dependent and it was observed that activation energies for diffusion in resins and com-
posites were not equal which is contrary to the theory of diffusion in filled polymers. The results in-
dicate a difference between the molecular structure of a 56209 neat resin and a 5209 composite matrix.
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For T300/6208 laminates Tajima [282) found that absorption in unaged laminates is
initially simple Fickian (constant diffusion coefficient). The first desorption is Fickian with a
concentration-dependent diffusion coefficient. The diffusion process continues to change with
hygrothermal conditioning and may become class II diffusion; that is, diffusion which is rate-
controlled by polymer relaxation resulting in distributions as shown in Figure 27 (for first absorption,
distributions are shown in Fig. 28). However, Tajima stated thau his results do not ruie out alternative
explanutions such as crazing and/or formation of a connected network of microcracks which would
enable fluid flow with simultaneous Fickian or strain-dependent diffusion.

6.2 Lagumir Type-Two Phase Diffusion Model in Composites

Carter and Kibler [49) proposed a linear model which involves sources and sinks of dif-
fusing moisture molecules. With respect to bound and unbound particles, it is similar to the Lagumir
theory of adsorption isotherms. An approximation of their exact solution of coupled differential
equations was used to fit data for mildly anomelrus moisture uptake curves for 5208 resin for over
two years. Since the saine parameters gave equally good fits to the data at all humidities, it appears
that the absorption anomaly does not result from nonlinear (concentration or stress dependent)
effects. A very similar mode] was presented by Gurtin and Yatomi [11%7]. In both papers ([49],
[117]) the model formulation and solution is presented. The unbound or free phase molecules follow
the concentration independent Fick's diffusion model where molecules are being bound with
probability per unit time 7 and released with probability per unit time 8. A method for calculating
7, 8, M_ — moisture guin at saturation and D-diffusivity for this model is given by Bonniau and
Bunsell [39], who made a comparative study of the two models in glass/epoxy composites. The
three materials used were the same except for the type of hardener used. (E glass with Bisphenol A
Resin). The Diamine cured material exhibited simple Fickian diffusion. Dicyandiamide hardener gave
results which fit better to Lagumir type of diffusion model. Probabilities ¥ and § increased with

temperature while the total fraction of water in free phase remained constant (:7_%5 = 0.7). For

single and two phase diffusion, diffusivity was only a function of temperature and followed a
Arrhenius-type relationship, The saturation limit was a linear function of relative humidity. For
both materials no damage was noticed except under most severe conditions. For the third hardener
(anhydride) considerable loss of material was evident at 40°C and above excluding any possibility of
general description of water absorption by diffusion.

L\
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Bunsell et al. [8], [68] examined the limitations of the laws of diffusion with the aid of
dielectric measurements on the same set of materials as in previous papers. Three mechanisms of
absorption were observed. The first corresponded to a simple Fickian mechanism and was not ac-
companied by an irreversible change in properties. The second was observed at levels of saturation
greater than 0.6 to 0.7% when materials were exposed to water vapours. A large increase in dielectric
losses was abserved together with electrical conduction. The third mechanism, only seen during
immersion, was the transport of water by capillary action along microcracks in the matrix.
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6.3 Constitutive Theory for Anisotropic Hygrothermoelasticity

Chung and Prater [63] developed a constitutive theory for hygrothermoelasticity in
anisotropic media, from the first and second law of thermodynamics with moisture diffusion included.
Fick’s first law was modified to account for a dependency on strain gradient. Chung and Bradshaw
[62) expanded this theory to include effects of Duffour (diffusion-thermal) and Soret (thermal-
diffusion). The fact that moisture may be present in free and bound phases is also taken into account.
The final forms of governing equations (momentum, heat conduction and two-phase diffusion), when

L cr Fr f S
»
O OEMMMI ¥ * R

-': solved simultaneously, provide a complete coupling of deformation field with heat and mass transfer
‘_ of moisture, Processes analyzed may be irreversible or reversible with viscoelastic effects present.
- Finite element solutions are presented for slighily simplified cases. Further investigations and experi-
..

ments are necessary before this model is practical.
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%i 7.0 CONCLUSIONS AND RECOMMENDATIONS

In the previous sections numerous conclusions drawn by researchers were cited. Here the
most significant and general conclusions and recommendations are listed:

1) The only general theory which addresses all possible modes of moisture diffusion is :
still in its development stage (see 6.3). !

2) At present, the researchar must first identify the model of diffusion which is most
suitable for the material and environmental conditions of interest.

3) The model of diffusion may change with time due to material degradation.
4) There is no general model for degradation of composite materials.

5) The accuracy of analytical estimates depends on the adequacy of the mathematical
models and their computational aspects, and on the realistic definition of environ.
mental conditions.

68) Material properties affecting diffusion have to be reliably determined.

T7) Very siringent quality assurance procedures must be followed during production of
compotite structures as slight variations in composition and/or cure may result in very
different diffusion properties which influence the long term effect of the environment
on mechanical properties.

8) A limited amount of research was devoted to transient effects — the performance of
composites subjected to high temperature and humidity gradients.

The literature reviewed above and the conclusions drawn represent the state of the art in
moisture and heat absorption into advanced composite materials. These studies were primarily
directed at providing the answers to the question of how much moisture or what temperature will be
expected to be found at a given point of a composite material given the conditions.
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' In the following parts of the review the effect of moisture and temperature on physical
and especially mechanical properties will be described and further conclusions and recommendations
will be drawn.
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FIG. 27: MOISTURE DISTRIBUTIONS IN UNI-
DIRECTIONAL COUPONS DURING SECOND
i ABSORPTION OF FIGURE 5. THE DISTRIBUTIONS
‘ ARE CHARACTERISTIC OF CRANK'S MODIFIED
CLASS H DIFFUSION [282)
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FIG. 28: MOISTURE DISTRIBUTIONS IN ANGLE-
PLY TEST COUPONS FOLLOWING ABSORPTION
AT 150°F/98% RH[282]
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SUMMARYJSOMMA IRE

’%is report is the first in a series of literature reviews in which hygrothermal effects on
aerospace composite materials (CM) are examined. This first report (Part I) deals primarily with
fundamental aspects of the diffusion of moisture into, and from, composite materials. The effects of
temperature under both steady state and transient conditions are also examined,

Subsequent reports in this series will deal with the following topics:

Psrt 11: " Physical Properties

Part 1II: . Mechanical Properties -

Part IV: Mechanical Properties 2

i Part V: - Composite Structures and Joints, ,7.+ -

Part VI:  <Numerical and Analytical Solutions.

Part VIi: Summary of Conclusions and Recommendations
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